Lecture Notes, Lecture 4, 5

1.4 A first approach: existence of general equilibrium in an economy with an excess demand function

N goods
Household's $(\mathrm{h} \in \mathrm{H})$ initial endowments of goods $\mathrm{r}^{\mathrm{h}}=\left(\mathrm{r}^{\mathrm{h}}{ }_{1}, \mathrm{r}^{\mathrm{h}}{ }_{2}, \ldots\right.$, $\left.\mathrm{r}^{\mathrm{h}}{ }_{\mathrm{N}}\right) \in \mathrm{R}^{\mathrm{N}}$. Aggregate endowment of the economy is $\mathrm{r} \equiv \sum_{h \in H} \mathrm{r}^{\mathrm{h}}$.

Prices

$$
p=\left(p_{1}, p_{2}, p_{3}, \ldots, p_{N-1}, p_{N}\right)=(3,1,5, \ldots, 0.5,10) . \text { Since only }
$$

relative prices, price ratios, matter in forming demand and supply, we suppose that the price space P, is the unit simplex in R^{N}.

$$
P=\left\{p \mid p \in R^{N}, p_{i} \geq 0, i=1, \ldots, N, \sum_{i=1}^{N} p_{i}=1\right\}
$$

Household demands, $\mathrm{h} \in \mathrm{H}$

$$
D^{h}: P \rightarrow R^{N}, \mathrm{D}^{\mathrm{h}}(\mathrm{p})=\left(\mathrm{D}_{1}^{\mathrm{h}}(\mathrm{p}), \mathrm{D}_{2}^{\mathrm{h}}(\mathrm{p}), \ldots, \mathrm{D}_{\mathrm{n}}^{\mathrm{h}}(\mathrm{p}), \ldots, \mathrm{D}_{\mathrm{N}}^{\mathrm{h}}(\mathrm{p})\right)
$$

Firm supplies, $\mathrm{j} \in \mathrm{F}$

$$
S^{j}: P \rightarrow R^{N} \quad \mathrm{~S}^{\mathrm{j}}(\mathrm{p})=\left(\mathrm{S}_{1}^{\mathrm{j}}(\mathrm{p}), \mathrm{S}_{2}^{\mathrm{j}}(\mathrm{p}), \ldots, \mathrm{S}_{\mathrm{n}}^{\mathrm{j}}(\mathrm{p}), \ldots, \mathrm{S}_{\mathrm{N}}^{\mathrm{j}}(\mathrm{p})\right)
$$

Excess demand

$$
\begin{equation*}
Z(p)=\sum_{h \in H} D^{h}(p)-\sum_{j \in F} S^{j}(p)-r \tag{1.26}
\end{equation*}
$$

$$
\begin{equation*}
Z: P \rightarrow R^{N} \tag{1.27}
\end{equation*}
$$

$$
\mathrm{Z}(\mathrm{p}) \equiv\left(\mathrm{Z}_{1}(\mathrm{p}), \mathrm{Z}_{2}(\mathrm{p}), \mathrm{Z}_{3}(\mathrm{p}), \ldots, \mathrm{Z}_{\mathrm{N}}(\mathrm{p})\right)
$$

Assumptions:

Walras' Law : For all $p \in P$,

$$
\begin{equation*}
p \cdot Z(p)=\sum_{i=1}^{N} p_{i} \cdot Z_{i}(p)=0 \tag{1.28}
\end{equation*}
$$

Continuity: $\mathrm{Z}(\mathrm{p})$ is a continuous function.
Definition: $p^{0} \in P$ is said to be an equilibrium price vector if $Z\left(p^{0}\right) \leq 0$ (0 is the zero vector; the inequality applies co-ordinatewise) with $p_{i}^{0}=0$ for i such that $Z_{i}\left(p^{0}\right)<0$. That is, p^{0} is an equilibrium price vector if supply equals demand in all markets (with possible excess supply of free goods).

Theorem 1.1 (Brouwer Fixed Point Theorem): Let $f(\cdot)$ be a continuous function, $f: P \rightarrow P$. Then there is $x^{*} \in P$ so that $f\left(x^{*}\right)=x^{*}$.

Theorem 1.2: Let Walras' Law and Continuity be fulfilled. Then there is $p^{*} \in P$ so that p^{*} is an equilibrium.

Proof: In order to prove the theorem we posit a price adjustment function, T , designed to represent the Walrasian auctioneer, raising prices of goods in excess demand, reducing prices of goods in excess supply, while keeping the price vector on the simplex P. Let $T: P \rightarrow P$. We will use the Brouwer fixed point theorem to show that the price adjustment function has a fixed point, a price vector from which it will not further readjust prices. Then we use the Walras Law to show that this fixed point is a market clearing equilibrium. We define T as follows:

$$
\begin{align*}
& \mathrm{T}(\mathrm{p})=\left(\mathrm{T}_{1}(\mathrm{p}), \mathrm{T}_{2}(\mathrm{p}), \ldots, \mathrm{T}_{\mathrm{i}}(\mathrm{p}), \ldots, \mathrm{T}_{\mathrm{N}}(\mathrm{p})\right) \\
& T_{i}(p) \equiv \frac{\operatorname{Max}\left[0, p_{i}+Z_{i}(p)\right]}{\sum_{n=1}^{N} \operatorname{Max}\left[0, p_{n}+Z_{n}(p)\right]} \tag{1.29}
\end{align*}
$$

First note that the denominator is the sum over $\mathrm{i}=1, \ldots, \mathrm{~N}$, of the numerators. This means that T really is a mapping into the unit simplex. For T to be well defined, the denominator must be nonzero. We state without proof that this will follow from Walras' Law. That is,

$$
\begin{equation*}
\sum_{n=1}^{N} \operatorname{Max}\left[0, p_{n}+Z_{n}(p)\right] \neq 0 \tag{1.30}
\end{equation*}
$$

Then T is a continuous mapping from P into P . By the Brouwer fixed point theorem there is $p^{*} \in P$ so that $T\left(p^{*}\right)=p^{*}$.

This completes the first step of the proof --- showing that the price adjustment process has a stopping point, p^{*}. The next step is to show that p^{*} really is a market-clearing vector of prices. That result depends on how cleverly $T(p)$ is constructed. If $T(p)$ is a well designed price adjustment function in a well behaved economy, then its fixed point, p^{*}, should be a market equilibrium.

Since $T\left(p^{*}\right)=p^{*}$, for each good $\mathrm{k}, T_{k}\left(p^{*}\right)=p_{k}^{*}$. That is, for all $\mathrm{k}=1, \ldots, \mathrm{~N}$,

$$
\begin{equation*}
p_{k}^{*}=\frac{\operatorname{Max}\left[0, p_{k}^{*}+Z_{k}\left(p^{*}\right)\right]}{\sum_{n=1}^{N} \operatorname{Max}\left[0, p_{n}^{*}+Z_{n}\left(p^{*}\right)\right]} \tag{1.31}
\end{equation*}
$$

Either

$$
\begin{gathered}
p_{k}^{*}=0 \quad \quad \text { (Case 1), or } \\
p_{k}^{*}=\frac{p_{k}^{*}+Z_{k}\left(p^{*}\right)}{\sum_{n=1}^{N} \operatorname{Max}\left[0, p_{n}^{*}+Z_{n}\left(p^{*}\right)\right]}>0, \quad \text { (Case 2). }
\end{gathered}
$$

Case 1: $p_{k}^{*}=0=\operatorname{Max}\left[0, p_{k}^{*}+Z_{k}\left(p^{*}\right)\right]$. Hence

$$
0 \geq p_{k}^{*}+Z_{k}\left(p^{*}\right)=Z_{k}\left(p^{*}\right) \text { and } Z_{k}\left(p^{*}\right) \leq 0
$$

Case 2: To save repeated messy notation define

$$
\begin{align*}
& \lambda=\frac{1}{\sum_{n=1}^{N} \operatorname{Max}\left[0, p_{n}^{*}+Z_{n}\left(p^{*}\right)\right]}>0 \tag{1.34}\\
& T_{k}\left(p^{*}\right)=\lambda\left(p_{k}^{*}+Z_{k}\left(p^{*}\right)\right)=p_{k}^{*}>0 \\
& (1-\lambda) p_{k}^{*}=\lambda Z_{k}\left(p^{*}\right) \tag{1.35}
\end{align*}
$$

multiply through by $Z_{k}\left(p^{*}\right)$,

$$
\begin{equation*}
(1-\lambda) p_{k}^{*} Z_{k}\left(p^{*}\right)=\lambda\left(Z_{k}\left(p^{*}\right)\right)^{2} \tag{1.36}
\end{equation*}
$$

sum over all k in case 2 ,

$$
\begin{equation*}
(1-\lambda) \sum_{k \in \text { Case } 2} p_{k}^{*} Z_{k}\left(p^{*}\right)=\lambda \sum_{k \in \text { Case } 2}\left(Z_{k}\left(p^{*}\right)\right)^{2} \tag{1.37}
\end{equation*}
$$

Walras' Law says
$0=\sum_{k=1}^{N} p_{k}^{*} Z_{k}\left(p^{*}\right)=\sum_{k \in \text { Case } 1} p_{k}^{*} Z_{k}\left(p^{*}\right)+\sum_{k \in \operatorname{Case} 2} p_{k}^{*} Z_{k}\left(p^{*}\right)$
But for $k \in$ Case $1, p_{k}^{*} Z_{k}\left(p^{*}\right)=0$, so

$$
\begin{equation*}
0=\sum_{k \in \text { Case } 1} p_{k}^{*} Z_{k}\left(p^{*}\right), \tag{1.39}
\end{equation*}
$$

So

$$
\begin{equation*}
\sum_{k \in \text { Case } 2} p_{k}^{*} Z_{k}\left(p^{*}\right)=0 . \tag{1.40}
\end{equation*}
$$

Hence from (1.37) ${ }^{1}$ we have,

[^0]\[

$$
\begin{equation*}
0=(1-\lambda) \sum_{k \in \text { Case } 2} p_{k}^{*} Z_{k}\left(p^{*}\right)=\lambda \sum_{k \in \text { Case } 2}\left(Z_{k}\left(p^{*}\right)\right)^{2} \tag{1.41}
\end{equation*}
$$

\]

$Z_{k}\left(p^{*}\right)=0$ for all k such that $p_{k}^{*}>0(\mathrm{k}$ in case 2$)$.
Hence, p^{*} is an equilibrium; it achieves excess demands of zero for all goods with positive prices and prices of zero for all goods in excess supply.

> QED

[^0]: There is a typo in the text at this point. The equation number referred to should be (1.37) as shown here, not "(1.13)" as it appears in the text.

