
Lecture Notes, Lecture 4, 5

1.4       A first approach:  existence of general equilibrium in an
economy with an excess demand function

N goods

Household's ( h∈H) initial endowments of goods rh = (rh
1, r

h
2, ...,

rh
N) ∈ RN.  Aggregate endowment of the economy is r ≡ rh .  

h∈H
Σ

Prices
.  Since onlyp = (p1, p2, p3,…, pN−1, pN) = (3, 1, 5,…, 0.5, 10)

relative prices, price ratios, matter in forming demand and supply,
we suppose that the price space P, is the unit simplex in RN.  

P = p p ∈ RN, pi ≥ 0, i = 1,…, N,
N

i=1
Σ pi = 1
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Household demands, h∈H
, Dh(p) = (Dh

1(p),Dh
2(p), ...,Dh

n(p), ..., Dh
N(p))Dh : P → RN

Firm supplies, j∈F
Sj(p)= (Sj

1(p),Sj
2(p), ...,Sj

n(p), ...,Sj
N(p))Sj : P → RN

Excess demand
(1.26)Z(p) =

h∈H
Σ Dh(p) −

j∈F
Σ Sj(p) − r

(1.27)Z : P → RN

 Z(p) ≡ (Z1(p), Z2(p), Z3(p), ..., ZN(p))

Assumptions:
Walras' Law :   For all  p ∈ P,

(1.28)p ⋅ Z(p) =
N

i=1
Σ pi ⋅ Zi(p) = 0
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Continuity:  Z(p) is a continuous function.       

Definition:   is said to be an equilibrium price vector if  p0 ∈ P
 (0 is the zero vector; the inequality appliesZ(p0) ≤ 0

co-ordinatewise) with for i such that .  That is, pi
0 = 0 Zi(p0) < 0 p0

 is an equilibrium price vector if supply equals demand in all
markets (with possible excess supply of free goods).

Theorem 1.1 (Brouwer Fixed Point Theorem):  Let  be af(⋅)
continuous function, .  Then there is  f : P → P

.x∗ ∈ P so that f(x∗) = x∗

Theorem 1.2: Let Walras' Law and Continuity  be fulfilled.  Then
there is  is an equilibrium.p∗ ∈ P so that p∗
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Proof:  In order to prove the theorem we posit a price adjustment
function, T, designed to represent the Walrasian auctioneer, raising
prices of goods in excess demand, reducing prices of goods in
excess supply, while keeping the price vector on the simplex P.
Let  .  We will use the Brouwer fixed point theorem toT : P → P
show that the price adjustment function has a fixed  point, a price
vector from which it will not further readjust prices.  Then we use
the Walras Law to show that this fixed point is a market clearing
equilibrium.  We define T as follows: 

T(p) =  (T1(p), T2(p), ..., Ti(p), ..., TN(p))  

(1.29)Ti(p) ≡
Max[0, pi + Zi(p)]

N

n=1
Σ Max[0, pn + Zn(p)]
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First note that the denominator is the sum over i=1, ..., N, of the
numerators.  This means that T really is a mapping into the unit
simplex.  For T to be well defined, the denominator must be
nonzero.  We state without proof that this will follow from Walras'
Law.  That is, 

(1.30)
N

n=1
Σ Max[0, pn + Zn(p)] ≠ 0

Then T is a continuous mapping from P into P.  By the Brouwer
fixed point theorem there is  so that .  p∗ ∈ P T(p∗) = p∗

This completes the first step of the proof --- showing that the
price adjustment process has a stopping point, p*.  The next step is
to show that p* really is a market-clearing vector of prices.  That
result depends on how cleverly T(p) is constructed.  If T(p) is a
well designed price adjustment function in a well behaved
economy, then its fixed point, p*, should be a market equilibrium.  
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Since ,  for each good k, .  That is, for allT(p∗) = p∗ Tk(p∗) = pk
∗

k = 1, ..., N,

(1.31)pk
∗ =

Max[0, pk
∗ + Zk(p∗)]

N

n=1
Σ Max[0, pn

∗ + Zn(p∗)]

Either   (Case 1), orpk
∗ = 0

  ,  (Case 2).pk
∗ =

pk
∗ + Zk(p∗)

N

n=1
Σ Max[0, pn

∗ + Zn(p∗)]
> 0

Case 1:  .  Hencepk
∗ = 0 = Max[0, pk

∗ + Zk(p∗)]
 .  0 ≥ pk

∗ + Zk(p∗) = Zk(p∗) and Zk(p∗) ≤ 0
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Case 2:  To save repeated messy notation define
(1.34)λ = 1

N

n=1
Σ Max[0, pn

∗ + Zn(p∗)]
> 0

Tk(p∗) = λ(pk
∗ + Zk(p∗)) = pk

∗ > 0

(1.35)(1 − λ)pk
∗ = λZk(p∗)

multiply through by ,Zk(p∗)

(1.36)(1 − λ)pk
∗Zk(p∗) = λ(Zk(p∗))2

sum over all k in case 2, 
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         (1.37)(1 − λ)
k∈ Case 2
Σ pk

∗Zk(p∗) = λ
k∈ Case 2
Σ (Zk(p∗))2

Walras' Law says
   (1.38)0 =

N

k=1
Σ pk

∗Zk(p∗) =
k∈ Case 1
Σ pk

∗Zk(p∗) +
k∈ Case 2
Σ pk

∗Zk(p∗)

But for , sok ∈ Case 1, pk
∗Zk(p∗) = 0

, (1.39)0 =
k∈ Case 1
Σ pk

∗Zk(p∗)

So . (1.40)
k∈ Case 2
Σ pk

∗Zk(p∗) = 0

Hence from (1.37)1 we have, 

1 There is a typo in the text at this point.  The equation number referred to should be (1.37) as shown here, not "(1.13)"  as it
appears in the text.
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        (1.41)0 = (1 − λ)
k∈ Case 2
Σ pk

∗Zk(p∗) = λ
k∈ Case 2
Σ (Zk(p∗))2

  for all k such that  (k in case 2). Zk(p∗) = 0 pk
∗ > 0

Hence, is an equilibrium; it achieves excess demands of zero forp∗

all goods with positive prices and prices of zero for all goods in
excess supply.  

QED
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